首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1372篇
  免费   51篇
  国内免费   143篇
化学   1145篇
晶体学   5篇
力学   63篇
综合类   3篇
数学   61篇
物理学   289篇
  2024年   1篇
  2023年   79篇
  2022年   48篇
  2021年   70篇
  2020年   82篇
  2019年   75篇
  2018年   39篇
  2017年   54篇
  2016年   51篇
  2015年   67篇
  2014年   80篇
  2013年   80篇
  2012年   76篇
  2011年   77篇
  2010年   67篇
  2009年   116篇
  2008年   93篇
  2007年   80篇
  2006年   64篇
  2005年   49篇
  2004年   49篇
  2003年   25篇
  2002年   22篇
  2001年   20篇
  2000年   14篇
  1999年   12篇
  1998年   11篇
  1997年   14篇
  1996年   9篇
  1995年   7篇
  1994年   7篇
  1993年   2篇
  1992年   3篇
  1991年   3篇
  1990年   4篇
  1989年   6篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1983年   4篇
  1979年   1篇
排序方式: 共有1566条查询结果,搜索用时 31 毫秒
1.
One of the major capacity boosters for 5G networks is the deployment of ultra-dense heterogeneous networks (UDHNs). However, this deployment results in a tremendous increase in the energy consumption of the network due to the large number of base stations (BSs) involved. In addition to enhanced capacity, 5G networks must also be energy efficient for it to be economically viable and environmentally friendly. Dynamic cell switching is a very common way of reducing the total energy consumption of the network, but most of the proposed methods are computationally demanding, which makes them unsuitable for application in ultra-dense network deployment with massive number of BSs. To tackle this problem, we propose a lightweight cell switching scheme also known as Threshold-based Hybrid cEll swItching Scheme (THESIS) for energy optimization in UDHNs. The developed approach combines the benefits of clustering and exhaustive search (ES) algorithm to produce a solution whose optimality is close to that of the ES (which is guaranteed to be optimal), but is computationally more efficient than ES and as such can be applied for cell switching in real networks even when their dimension is large. The performance evaluation shows that THESIS significantly reduces the energy consumption of the UDHN and can reduce the complexity of finding a near-optimal solution from exponential to polynomial complexity.  相似文献   
2.
Magnetically retrieval CuFe2O4@MIL-101(Cr) metal–organic framework was successfully prepared from easily available starting materials and characterized using various spectroscopic and analytical techniques such as powder X-ray diffraction, scanning electron microscopy, energy dispersive X-ray, transmission electron microscopy, elemental mapping, Fourier transform infrared spectroscopy, thermogravimetric analysis, X-ray photoelectron spectroscopy, Brunauer–Emmett–Teller, vibrating sample magnetometer, and inductively coupled plasma optical emission spectroscopy. The catalyst was then used in the synthesis of benzodiazepines containing a triazole moiety in water. The advantages of this protocol include high yields, reusability of the catalyst, and gram-scale synthesis.  相似文献   
3.
Biomaterial scaffolds are the cornerstone to supporting 3D tissue growth. Optimized scaffold design is critical to successful regeneration, and this optimization requires accurate knowledge of the scaffold's interaction with living tissue in the dynamic in vivo milieu. Unfortunately, non‐invasive methods that can probe scaffolds in the intact living subject are largely underexplored, with imaging‐based assessment relying on either imaging cells seeded on the scaffold or imaging scaffolds that have been chemically altered. In this work, the authors develop a broadly applicable magnetic resonance imaging (MRI) method to image scaffolds directly. A positive‐contrast “bright” manganese porphyrin (MnP) agent for labeling scaffolds is used to achieve high sensitivity and specificity, and polydopamine, a biologically derived universal adhesive, is employed for adhering the MnP. The technique was optimized in vitro on a prototypic collagen gel, and in vivo assessment was performed in rats. The results demonstrate superior in vivo scaffold visualization and the potential for quantitative tracking of degradation over time. Designed with ease of synthesis in mind and general applicability for the continuing expansion of available biomaterials, the proposed method will allow tissue engineers to assess and fine‐tune the in vivo behavior of their scaffolds for optimal regeneration.  相似文献   
4.
《Comptes Rendus Mecanique》2019,347(8):601-614
During machining processes, materials undergo severe deformations that lead to different behavior than in the case of slow deformation. The microstructure changes, as a consequence, affect the materials properties and therefore influence the functionality of the component. Developing material models capable of capturing such changes is therefore critical to better understand the interaction process–materials. In this paper, we introduce a new physics model associating Mechanical Threshold Stress (MTS) with Dislocation Density (DD) models. The modeling and the experimental results of a series of large strain experiments on polycrystalline copper (OFHC) involving sequences of shear deformation and strain rate (varying from quasi-static to dynamic) are very similar to those observed in processes such as machining. The Kocks–Mecking model, using the mechanical threshold stress as an internal state variable, correlates well with experimental results and strain rate jump experiments. This model was compared to the well-known Johnson–Cook model that showed some shortcomings in capturing the stain jump. The results show a high effect of rate sensitivity of strain hardening at large strains. Coupling the mechanical threshold stress dislocation density (MTS–DD), material models were implemented in the Abaqus/Explicit FE code. The model shows potentialities in predicting an increase in dislocation density and a reduction in cell size. It could ideally be used in the modeling of machining processes.  相似文献   
5.
New approach for the reversal tolerant anode for polymer electrolyte membrane fuel cell is suggested by using the multifunctional IrRu alloy catalyst having concurrent superior activities towards hydrogen oxidation reaction and oxygen evolution reaction to mitigate the degradation of anode under the fuel starvation condition.  相似文献   
6.
The rapid transmission of vaccinia virus(VACV)in vivo is thought to be closely related to the cell migration induced by it.Cell migration involved in dynamic changes of cell-substrate adhesion and actin cytoskeleton organization,which can influence by the micro/nano-scale topographic structures that cells are naturally exposed to via contact guidance.However,migration behaviors of VACV-infected cells exposed to topographic cues are still unknown.Herein,we designed an open chip with microgrooved poly(dimethyl siloxane)(PDMS)substrate to explore the topography roles in VACV-induced cell migration.Differed from the random cell migration observed in traditional scratch assay on planar substrate,VACV-infected cells had a tendency to persistently migrate along the axis parallel to microgroove with increased velocity.Moreover,infected cells exhibited a dominant elongated protrusion aligned to the micro-grating axis compare to the shorter lamella extended in any direction on smooth substrate.Interestingly,the Golgi complex preferred to relocate behind the nucleus confined within the micro-grating axis in majority of infected migratory cells.The directional polarization of cells embodied in protrusion formation and Golgi reorientation was responsible for the directionally persistent migration behaviors induced by VACV on microgrooved substrate.Infected cells response to substrate topography,causing the actin-filled stretched protrusion containing numerous virions and accelerated movement is likely to facilitate direct and rapid spread of VACV.This work opens a window for us to understand the migration behaviors of infected cells in vivo,and also provides a cue for revealing the relationship between virus-induced cell migration and virus rapid spread.  相似文献   
7.
Tomography phase microscopy (TPM) is a new microscopic method that can quantitatively yield the volumetric 3D distribution of a sample׳s refractive index (RI), which is significant for cell biology research. In this paper, a controllable TPM system is introduced. In this system a circulatory phase-shifting method and piezoelectric ceramic are used which enable the TPM system to record the 3D RI distribution at a more controllable speed, from 1 to 40 fps, than in the other TPM systems reported. The resolution of the RI distribution obtained by this controllable TPM is much better than that in images recorded by phase contrast microscopy and interference tomography microscopy. The realization of controllable TPM not only allows for the application of TPM to the measurement of kinds of RI sample, but also contributes to academic and technological support for the practical use of TPM.  相似文献   
8.
采用糖球模板法结合热致相分离技术,制备了孔径尺寸、内连通度及孔隙率高度可控的左旋聚乳酸(PLLA)支架材料,并通过扫描电镜(SEM)、红外光谱(FTIR)以及示差扫描量热法(DSC)对其空间结构及性能进行了系统研究.支架材料孔径从50μm到800μm及内连通孔径从10μm到200μm连续可调,微观孔壁结构根据不同溶剂可形成各异的微纳米结构.支架的制备对PLLA化学结构无显著影响,但相分离过程会不同程度地降低PLLA的结晶度.  相似文献   
9.
To better understand how enzyme localization affects enzyme activity we studied the cellular localization of the glycosyltransferase MurG, an enzyme necessary for cell wall synthesis at the spore during sporulation in the bacterium Bacillus subtilis. During sporulation MurG was gradually enriched to the membrane at the forespore and point mutations in a MurG helical domain disrupting its localization to the membrane caused severe sporulation defects, but did not affect localization nor caused detectable defects during exponential growth. We found that this localization is dependent on the phospholipid cardiolipin, as in strains where the cardiolipin-synthesizing genes were deleted, MurG levels were diminished at the forespore. Furthermore, in this cardiolipin-less strain, MurG localization during sporulation was rescued by external addition of purified cardiolipin. These results support localization as a critical factor in the regulation of proper enzyme function and catalysis.  相似文献   
10.
The importance of cell design to the development of convenient, laboratory organic electrosyntheses, popular with synthetic chemists, is highlighted. Although also influencing reaction selectivity, the cell design is the major factor determining the rate of conversion of reactant to product, the final conversion that can be achieved and the quantity of product formed. The recent literature contains a number of designs of flow electrolysis cells for electrosynthesis with examples of their application.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号